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We study the width-amplitude relation for three-dimensional Bernstein-Greene-Kruskal(BGK) electrostatic
solitary waves in magnetized plasmas, taking into account the dynamics of both electrons and ions. We obtain
two coupled inequalities that constrain the amplitude and the widths parallel and perpendicular to the magnetic
field for a Gaussian potential, and demonstrate how the solution space is further constrained by the finite
temperature ratio between electrons and ions. The description is valid for both the electron and ion mode
solitary waves. Our results provide a quantitative basis for understanding the ubiquity of BGK waves in widely
different classes of collisionless plasmas.
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Coherent structures with nonuniform charge densities are
ubiquitous in plasma systems. Laboratory experiments have
shown that such structures can be generated by applying
voltage pulses[1,2], voltage jumps[3], intense laser[4], or
plasma beam injections[5]. Increasing numbers of space-
borne observations have revealed frequent appearance of
electrostatic solitary structures in space plasmas(Refs.[6,7],
and references therein), including regions where magnetic
reconnection occurs[8,9]. Solitary waves can efficiently
transport energy, momentum, and charge, and are one of the
building blocks in a deterministic description of turbulence
[10,11]. The study of their allowed parameter space is crucial
in establishing their relevance to real systems. Most solitary
waves, such as those for shallow water(Korteweg–de Vries
solitons) and those that describe crystal dislocations(sine–
Gordon solitons), have a strict one-to-one mapping between
their widths, amplitudes, and velocities[12]. On the other
hand, in collisionless plasmas, the Bernstein-Greene-Kruskal
(BGK) solitary waves[13] that exhibit vortex structures in
phase space are less tightly constrained. The only constraint
that delineates the allowed parameter space is the non-
negativity of the trapped particle phase-space density[13],
and the macroscopic manifestation of this constraint is the
inequality relation between the width and amplitude of a
solitary potential. The one-dimensional(1D) width-
amplitude relations have been studied for various potentials
and ambient plasma distributions[14–17]. However, the fo-
cus has been exclusively on whether the width of the solitary
potential should increase[14,17] or decrease[15,16] with
increasing potential amplitudes. The inequality aspect and its
possible impact have not been discussed.

Little is known about the width-amplitude relations of
BGK solitary waves in three dimensions(3D), and how the
relations are modified when the dynamics of both ions and
electrons are included. The few studies on the relations in 3D
are for the electron mode solitary waves without including
ion dynamics[18–21]. In these studies, applications to space
observations of electrostatic solitary waves have been exten-
sively discussed; however, they lack fully self-consistent so-
lutions that constrain the widths and amplitudes for the spe-
cific models considered therein. In this article, we derive
inequality width-amplitude relations for 3D BGK solitary

waves based on fully self-consistent solutions, and we
incorporate the dynamics of both electrons and ions. The
description is valid for the electron mode as well as the ion
mode. We find two coupled inequalities that constrain the
amplitude and the widths parallel and perpendicular to the
magnetic field, and the solution space is further constrained
when the dynamics of the second species is added. The in-
equality width-amplitude relations dictate a continuous range
of admissible sizes and amplitudes for these waves, and sup-
port their ubiquitous presence in widely different classes of
collisionless plasmas. Our exact results in the strong-
magnetic-field limit provide important guidance for future
simulation studies on 3D BGK solitary waves in finite fields.

To construct exact nonlinear solutions that are localized in
3D, we use the BGK approach that was formulated for 1D
nonlinear Vlasov-Poisson equations[13], but extend the
Poisson equation to 3D. We construct azimuthally symmetric
solutions in the limit of infinite magnetic field. The criteria
for neglecting effects of nonzero cyclotron radius will be
discussed later. One key step in the BGK approach is to
separate particles that are trapped in the potential and those
that are passing. We prescribe the potential form and the
passing particle distribution, solve for the trapped particle
distribution, and derive the physical parameter range. This
approach is much easier than prescribing the passing and
trapped particle distributions to solve for the potential
[15,16], and so allows us to explore the solution space in
much greater depth.

We consider two species of charge carriers(electrons and
one type of ions), each with chargeqs, massms, and ambient
thermal energyTs. The background magnetic fieldB is along
the ẑ direction. In the strong field limit, particles move only
alongB with velocity v, and the distribution functionfs sat-
isfies the following Vlasov equation:

v
] fssr ,vd

] z
−

qs

ms

] Fsr d
] z

] fssr ,vd
] v

= 0, s1d

whereFsr d is the electrostatic potential, and we choose the
boundary conditionFs`d=0 for our solitary wave study. It
can be shown easily by chain rules that anyfsr ' ,wd is a
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solution to Eq.(1), since its dependence onz andv is only
through the particle energyw=msv2/2+qsFsr d. Such distri-
bution functions and the potential are further constrained by
the Poisson equation

− ¹2Fsr d = o
s=1

2 E
qsFsr d

`

dw
4pnsqs fssr ',wd

Î2msfw − qsFsr dg
, s2d

where the velocity space integral has been converted to
energy space integral, andfssr ' ,wd is normalized so thatns

is the particle density in the unperturbed region where charge
neutrality givesos nsqs=0. Species 1 is defined to be the one
which involves trappingsminfq1Fsr dg,0d, and species 2
does not. The distribution functionf1 is further divided into
passing sw.0d and trapped sw,0d components,
labeled as fp and f tr, respectively. The second term in
Eq. (1) is nonlinear, asF is a functional of the particle dis-
tributions and vice versa. In physical terms, the system is
nonlinear because plasma particles collectively determine the
mean-field potential, and the potential in turn determines
how particles distribute themselves. It is the presence of this
nonlinear term that admits solitary wave solutions which ex-
hibit localized structures in potentials and distribution func-
tions.

Equation (1) can be thought of as a set of 1D Vlasov
equations in theẑ direction for givenr '. These parallel Vla-
sov equations are coupled by the perpendicular profile of the
potentialF through Eq.(2). If F is known, Eq.(2) reduces
to a set of 1D integral equations parametrized byr '. For
given f2 and fp, the trapped distributionf tr can be found by
solving these integral equations. The requirement for the so-
lutions to be physical is that the trapped distributionf tr so
determined should be non-negative. This leads to a self-
consistent constraint on the form of the potential specified at
the beginning. It turns out that neither the potential forms nor
the passing distributions are tightly constrained. One can pre-
scribe different localized potential functions or different
passing particle distributions(as long as the distribution
functions satisfy the Vlasov equation). As an example, the
solitary potential is chosen to be an azimuthally symmetric
double-Gaussian,

Fsr,zd = gc exps− z2/2d z
2 − r2/2d r

2d, s3d

whereg=−signsq1d in order forF to trap species-1 particles,
c is the potential amplitude and is positive,r = ur 'u, dz anddr
are the widths parallel and perpendicular, respectively, toB.
The distributionsfp and f2 are chosen to be the Boltzmann
type as they represent isotropic ambient plasmas that are the
simplest and satisfy Eq.(1).

fpswd = Î2m1/pT1 exps− w/T1d, s4d

f2swd = Î2m2/pT2 exps− w/T2d. s5d

We note that in this choice, the distribution functions for
particles with positive velocity and with negative velocity
have been taken to be equal(isotropic), while in general they
can be different as allowed by Eq.(1). By carrying out the
integrals offp and f2 in Eq. (2) and calculating the left-hand

side of Eq. (2) with F given by Eq. (3), we obtain the
trapped particle density

ntrsFd = FF r2

d r
2S 1

d r
2 −

1

d z
2D −

2

d r
2 −

1

d z
2 −

2

d z
2 lnS F

gc
DG

− e−Ff1 − erfsÎ− Fdg + exps− tFd, s6d

where t=q2T1/ sq1T2d. To simplify the expression, we have

set the length unit to belD=ÎT1/4pn1q1
2, energy unitT1, and

charge unitq1 (F becomes strictly negative in units of
T1/q1). We have also rewritten the expression in terms of the
potential, a crucial step for solving the integral equation ana-
lytically. The first term in Eq.(6) is the total charge density
calculated from the potential, the second term is the contri-
bution from the passing particles of species 1, and the last
term is the density of species 2.

Substituting Eq.(6) into Eq. (2), one is left with an inte-
gral equation forf tr. We refer readers to Appendix B in Ref.
[21] for the details of solving this Volterra-type integral
equation, and simply write the solution for trapped electron
distribution here

f trsr,wd
Î2m1

=
2Î− w

p
F r2
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4w

− c
G

+
e−w

Îp
f1 − erfsÎ− wdg −

etw

Îp
Ît erfisÎ− twd, s7d

wherew,0, and erfiszd=erfsizd / i is the complex error func-
tion which is a real function of its argument. Equation(7) is
the first such solution in which density perturbations from
both species are incorporated, and the temperature ratio is
included as an explicit parameter. Its 1D limit represents a
specific realization of the general solutions derived by BGK
[13]. Equation(7) is also very valuable for future numerical
or simulation studies of the stabilities of 3D BGK solitary
waves, since one can set up such plasma distributions and
see how various perturbations would affect the subsequent
evolution.

Our results show that even whenTi .Te for electron-
proton plasma, ion solitary waves(ion holes) can still exist.
This can be seen most easily from the small-amplitude ex-
pansion of Eq.(6). The deviation of passing ion density from
its ambient value is about −ÎuFu, while the electron density
deviation isFTi /Te (note thatF is negative). As a result,
there always exists a small wave amplitude,ÎuFu,Te/Ti, so
that the net electron density is higher than the passing ion
density. This condition ensures the non-negativity of trapped
ion density under the constraint of the Poisson equation,
which requires a negative charge core. The existence of ion
hole solutions is thus guaranteed. This result sharply con-
trasts the previous result, which predicts that ion holes do not
exist whenTe/Ti ,3.5 [16].

For the solutions to be physical,f tr has to be non-negative
everywhere. This weak constraint gives rise to inequality
width-amplitude relations. The main task for solving these
inequalities is to find the global minimum off tr, which is at
the center of the solitary potential in our case. We separate
the parameter space into two distinct regions. Fordr ødz, the
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first term inside the first square brackets in Eq.(7) is posi-
tive; hence, the minimum off tr for a givenw is at f trs0,wd.
Given the fact that the last two terms in Eq.(7) are positive
and monotonically decreasing withuwu, it can be shown that
the global minimum isf trs0,−cd. For dr .dz, the global
minimum of f tr occurs at maximum allowedr. For a given
w,0, the maximumr at which a trapped particle with en-
ergy w can exist is thermax that satisfies −w=Fsrmax,0d.
Putting Eq. (3) into this condition, we obtainrmax

2

=−2d r
2 lns−w/cd. We then find again that the global mini-

mum of f trsrmax,wd is atw=−c, wherermax=0. Therefore, in
both regions, the width-amplitude relations are set by the
constraintf trs0,−cdù0.

Upon rearrangement of Eq.(7), the inequality resulting
from f trs0,−cdù0 is

dz ùÎ 2s4 ln 2 − 1d
Fpsc,td/Îc − 4/d r

2
, s8d

where

Fpsc,td
Îp

= ec f1 − erfsÎcdg − e−tcÎt erfisÎtcd.

Since the denominator in inequality(8) has to be positive
definite, additional inequalities arise

d r
2 . 4Îc/Fpsc,td . 0. s9d

Figure 1(a) plots the above inequalities for two differentt
values. Parameters lying on or above the shaded surface A
are allowed fort=0, and those under the surface are forbid-
den. Similarly, parameters on and above the surface B are
allowed for t=0.1. The curves on thedz=0 plane are
asymptotic projections of the shaded surfaces plotted accord-
ing to the first part of inequality(9). The larger valuet is, the
more restricted the parameter space is. The case oft=0 cor-
responds to the limitT2→`, when the second species is so

hot that its density is essentially unaffected by the solitary
potential. This is the limit on which all previous studies on
electron mode solitary waves were based.

These inequalities occur because we are free to place the
global minimum off tr in a continuous range by correspond-
ingly adjusting the amplitude and widths. A point on the
shaded surface corresponds to a solution that has zero phase-
space density at the centersr =0,z=0,v=0d of the solitary
phase-space structure. The second part of inequality(9) is
plotted as Fig. 1(b), which illustrates how the maximum al-
lowed potential amplitude depends ont for a range oft that
is relevant to most space and laboratory investigations. One
important implication is that for a givent value, there exists
a maximum allowed electric field amplitude, a consequence
of the upper bound inc and lower bounds indr anddz.

In the limit of dr →`, inequality(8) reduces to the width-
amplitude relation for 1D BGK solitary waves. This limit
yields an upper bound fordz that is valid for all finitedr at a
given temperature ratio between ions and electrons. If we
further sett=0, the resulting 1D inequality relation provides
us a ground to understand the discrepancy between two pre-
vious results of whether the width should increase[14] or
decrease[15] with the amplitude. Both results are contained
in the inequality relation with that of Ref.[14] corresponding
to the lower bounding curve, since only empty-centered dis-
tributions were studied, and that of Ref.[15] contained in the
region above the curve, as the distributions only take finite
values at the center of the phase-space structure.

We note that the size and the amplitude of BGK solitary
waves do not have a lower cutoff within our theory. The
underlying reason is that the screening of the charged core is
accomplished by trapped particles which are part of the soli-
tary structure itself. Debye screening is not involved in these
self-consistent, self-sustained nonlinear objects. Their size
can be well below the Debye radius as long as there are
enough particles in the solitary wave to ensure the validity of
the mean-field approach. Taking a Debye radiusslDd 100 m
and a plasma density 5 cm−3 (typical of the low-altitude
auroral ionosphere), a width of 0.01lD for the solitary po-
tential allows 53106 particles in the structure, well within
the applicability of the mean-field approach. Indeed, sub-
Debye-scale solitary waves have been observed[6].

All the above results have been obtained in the infinite
magnetic field limit. To establish the validity of these results
in the finite magnetic field, we consider trapped particle tra-
jectories inside the solitary potential. Here, we only summa-
rize the final results, and leave the actual calculations to a
future article. If the cyclotron radius is much smaller than the
scale lengths over which the potential varies, the instanta-
neous guiding center of the particle would spiral around the
infinite-field guiding center, and the solitary structure could
be maintained. BothE3B drift and polarization drift are
contained in our calculations. SinceE3B drift is in the azi-
muthal direction, it is only the polarization drift that would
lead to the running away of trapped particles and thus the
disintegration of the solitary structure. We obtain the follow-
ing criteria for neglecting the effects due to the polarization
drift:

Îm1c/q1 ! Bdz s10d

FIG. 1. Allowed parameter space for 3D BGK electron and ion
solitary waves based on inequalities(8) and (9). (a) Boundaries of
inequality(8) for t=0 (surface A) and t=0.1 (surface B). Points on
and above the shaded surfaces represent allowed parallel sizesdzd,
perpendicular sizesdrd, and potential amplitudesscd. The curves on
the dz=0 plane depicting inequality(9) are asymptotic projections
of the two surfaces.(b) Allowed c for a range oft=q2T1/q1T2

according to inequality(9), which shows that there exists an upper
bound for the potential amplitude with a given temperature ratio
between electrons and ions.
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Îm1c/q1 ! Bdr . s11d

Our results are consistent with those from a numerical inves-
tigation of finite-field effects[18].

The freedom to continuously adjust the global minimum
of the trapped particle distribution is due to the collisionless
nature of the plasma. The identities of trapped and passing
particles are preserved, as the energy of a particle is con-
served. Collisions destroy energy conservation of individual
particles, and consequently do not allow the existence of a
trapped particle state. Therefore, the kinetic solitary waves
have a continuum of allowed potential heights and widths, in
great distinction to fluid solitons that possess only one al-
lowed width for a fixed amplitude. Moreover, even with the
same ambient plasma distribution, different functional forms
for the solitary potential are allowed. This multitude of con-
tinua of allowed potentials supports the ubiquity of BGK
waves that is revealed by numerous experimental and simu-
lation studies. Because these solitary waves have many de-
grees of freedom, energy, momentum, and charge are readily
transferred between them, so they can make important con-
tributions to bulk properties of the plasma such as thermal
transport and electrical resistivity. As particle trapping pro-

hibits particles from free acceleration by the applied electric
field and consequently would regulate the electric current,
the excitation of BGK waves may lead to finite resistivity
that is required for melting the frozen-in magnetic flux and
facilitate reconnection to occur in collisionless plasmas[8,9].

In summary, we have obtained trapped particle solutions
for 3D BGK electron and ion solitary waves, taking into
account dynamics of both species. We derived from the so-
lutions exact inequality relations that constrain the widths
and amplitudes of the solitary waves, and the temperature
ratio between electrons and ions. Our results are valid for
strong magnetic fields where the cyclotron radius of trapped
particles is smaller than the lengths over which the solitary
potential varies. We suggest that the continuum of allowed
parameter space of BGK waves is responsible for their
ubiquity. Our analytical solution for the trapped particle dis-
tribution provides a good foundation for future investigations
on stabilities of BGK waves.
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