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We study the width-amplitude relation for three-dimensional Bernstein-Greene-K(BsRHKl) electrostatic
solitary waves in magnetized plasmas, taking into account the dynamics of both electrons and ions. We obtain
two coupled inequalities that constrain the amplitude and the widths parallel and perpendicular to the magnetic
field for a Gaussian potential, and demonstrate how the solution space is further constrained by the finite
temperature ratio between electrons and ions. The description is valid for both the electron and ion mode
solitary waves. Our results provide a quantitative basis for understanding the ubiquity of BGK waves in widely
different classes of collisionless plasmas.
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Coherent structures with nonuniform charge densities are&vaves based on fully self-consistent solutions, and we
ubiquitous in plasma systems. Laboratory experiments havimcorporate the dynamics of both electrons and ions. The
shown that such structures can be generated by applyingescription is valid for the electron mode as well as the ion
voltage pulseg1,2], voltage jumpg3], intense lasef4], or  mode. We find two coupled inequalities that constrain the
plasma beam injectiongs]. Increasing numbers of space- amplitude and the widths parallel and perpendicular to the
borne observations have revealed frequent appearance gfagnetic field, and the solution space is further constrained
electrostatic solitary structures in space plastiefs.[6,7,  \when the dynamics of the second species is added. The in-
and references therginincluding regions where magnetic ¢qajity width-amplitude relations dictate a continuous range
reconnection occurg8,9]. Solitary waves can efficiently o agmissible sizes and amplitudes for these waves, and sup-
transport energy, momenium, af‘d charge,. and are one of t rt their ubiquitous presence in widely different classes of
building blocks in a det_ermlmstlc description of tur_bulenc_eFO"iSionless plasmas. Our exact results in the strong-
[10,11. The study of their allowed parameter space is CrUCIamagnetic—ﬁeld limit provide important guidance for future

in establishing their relevance to real systems. Most solitary . . . ) e
waves, such as those for shallow watéprteweg—de Vries Yimulation studies on 3D BGK sohtary waves in finite f!elds:
To construct exact nonlinear solutions that are localized in

solitong and those that describe crystal dislocati¢sisie—
Gordon soliton have a strict one-to-one mapping betweensD: We use the BGK approach that was formulated for 1D

their widths, amplitudes, and velocitigs2]. On the other ~nonlinear Viasov-Poisson equatiori$3], but extend the
hand, in collisionless plasmas, the Bernstein-Greene-Krusk&10isson equation to 3D. We construct azimuthally symmetric
(BGK) solitary waves[13] that exhibit vortex structures in solutions in the limit of infinite magnetic field. The criteria
phase space are less tightly constrained. The only constraif@r neglecting effects of nonzero cyclotron radius will be
that delineates the allowed parameter space is the nomliscussed later. One key step in the BGK approach is to
negativity of the trapped particle phase-space derjdi§y, = Separate particles that are trapped in the potential and those
and the macroscopic manifestation of this constraint is théhat are passing. We prescribe the potential form and the
inequality relation between the width and amplitude of apassing particle distribution, solve for the trapped particle
solitary potential. The one-dimensiona{lD) width-  distribution, and derive the physical parameter range. This
amplitude relations have been studied for various potentialgpproach is much easier than prescribing the passing and
and ambient plasma distributiofis4—17. However, the fo- trapped particle distributions to solve for the potential
cus has been exclusively on whether the width of the solitary15,16, and so allows us to explore the solution space in
potential should increasgl4,17 or decreasg15,16 with ~ much greater depth.
increasing potential amplitudes. The inequality aspect and its We consider two species of charge carrigigctrons and
possible impact have not been discussed. one type of iong each with charges, massm,, and ambient
Little is known about the width-amplitude relations of thermal energyls. The background magnetic fieRlis along
BGK solitary waves in three dimensio3D), and how the theZ direction. In the strong field limit, particles move only
relations are modified when the dynamics of both ions andilongB with velocity v, and the distribution functiof sat-
electrons are included. The few studies on the relations in 3sfies the following Vlasov equation:
are for the electron mode solitary waves without including
ion dynamicg18-21]. In these studies, applications to space U&fs(r,v) _Gs 90(r) afy(r,v) _
observations of electrostatic solitary waves have been exten- Jaz mg dz dv
sively discussed; however, they lack fully self-consistent so-
lutions that constrain the widths and amplitudes for the spewhere®(r) is the electrostatic potential, and we choose the
cific models considered therein. In this article, we deriveboundary conditionP(ec)=0 for our solitary wave study. It
inequality width-amplitude relations for 3D BGK solitary can be shown easily by chain rules that dfity, ,w) is a

0, (1)
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solution to Eq.(1), since its dependence @mandv is only  side of Eq.(2) with ® given by Eg.(3), we obtain the
through the particle energy=mw?/2+q.®(r). Such distri- trapped particle density

bution functions and the potential are further constrained by 2
the Poisson equation Ny (D) = q)[r_z(lz _ %) _ % _ iz _ % |n<2>]
2 © 4 f ( ) 5r 5r 52 5r 52 52 glﬂ
n r,,w
-V =3 ke 2 ~ 1 - erf\- )] + expl~ ), (6)

W T L]
s1a0  V2mdw = geP(r)]
) _ wheret=q,T;/(q;T,). To simplify the expression, we have
where the velocity space integral has been converted to t the length unit t bl = T/ 4mn.a2 i d
energy space integral, arfg(r ; ,w) is normalized so thatg € engtn unitto blep = v T,/ 47M,qy, Energy unitf,, an

is the particle density in the unperturbed region where charg%harge unitq, (® becomes strictly negative in units of
neutrality gives, n.q,=0. Species 1 is defined to be the one 1/0;7). We have also rewritten the expression in terms of the

S . ! . potential, a crucial step for solving the integral equation ana-
\éVh'Ch mtvc?rl\r:es d.tr?Pé) u;_g(m]:n[qltfb(r)_]<f0)t,han(;_ ;segpst 2 lytically. The first term in Eq(6) is the total charge density
0€s not. The distribution func lofy is further divided into calculated from the potential, the second term is the contri-
passing (w>0) and trapped (w<0) components,

. ' bution from the passing particles of species 1, and the last
labeled asf, and f, respectively. The second term in b gb P

. . i ; . . term is the density of species 2.
E_q. (D IS nonhnt_aar, a> is a functhnal of the particle dis- . Substituting Eq(6) into Eq. (2), one is left with an inte-
trlbu_t|ons and vice versa. In physmal terms, the System Ig equation forf,,. We refer readers to Appendix B in Ref.
nonlinear because plasma particles collectively determine th

field al d th al i q ) 1] for the details of solving this \Volterra-type integral
mean-field potential, and the potential in turn determine: quation, and simply write the solution for trapped electron
how particles distribute themselves. It is the presence of thi

. , _ : : distribution here
nonlinear term that admits solitary wave solutions which ex-

hibit localized structures in potentials and distribution func- f, (r,w) 2\’:\,{ r2 ( 1 1 ) 2 1 2 4w

tions. — ol 2 2 T et eI
Equation(1) can be thought of as a set of 1D Vlasov vemy ™ Lor\or 4y or 67 9, i

equations in th& direction for givenr | . These parallel Vla- eV — e —

sov equations are coupled by the perpendicular profile of the + V_Tr[l —erfy-w)] - V,_;\’t erfiv—tw),  (7)

potential® through Eq.(2). If ® is known, Eq.(2) reduces
to a set of 1D integral equations parametrizedrhy For  wherew< 0, and erfiz) =erf(iz)/i is the complex error func-
given f, andf,, the trapped distributiofy, can be found by tion which is a real function of its argument. Equatidh is
solving these integral equations. The requirement for the sahe first such solution in which density perturbations from
lutions to be physical is that the trapped distributignso  both species are incorporated, and the temperature ratio is
determined should be non-negative. This leads to a selfincluded as an explicit parameter. Its 1D limit represents a
consistent constraint on the form of the potential specified agpecific realization of the general solutions derived by BGK
the beginning. It turns out that neither the potential forms nof13]. Equation(7) is also very valuable for future numerical
the passing distributions are tightly constrained. One can presr simulation studies of the stabilities of 3D BGK solitary
scribe different localized potential functions or different waves, since one can set up such plasma distributions and
passing particle distributiongas long as the distribution see how various perturbations would affect the subsequent
functions satisfy the Vlasov equatiprAs an example, the evolution.
solitary potential is chosen to be an azimuthally symmetric Our results show that even whéh>T, for electron-
double-Gaussian, proton plasma, ion solitary wavé®n holeg can still exist.
This can be seen most easily from the small-amplitude ex-

D(r,2) = gy expl— 21265 - 1%1257), (3 pansion of Eq(6). The deviation of passing ion density from
whereg=-sigr(q,) in order ford to trap species-1 particles, its ambient value is aboutyi®|, while the electron density
Y is the potential amplitude and is positives|r ||, 5,ands, ~ deviation is®T;/T, (note thatd is negau:;;%As a result,

are the widths parallel and perpendicular, respectivelfg.to there always exists a small wave amplituggh| <Te/T;, so
The distributionsf, and f, are chosen to be the Boltzmann that the net electron density is higher than the passing ion

type as they represent isotropic ambient plasmas that are tglensity. This condition ensures the non-negativity of trapped

simplest and satisfy Eq1). ion density under the constraint of the Poisson equation,
which requires a negative charge core. The existence of ion
fo(w) = v2my/ 7Ty exp(— wiTy), (4) hole solutions is thus guaranteed. This result sharply con-

trasts the previous result, which predicts that ion holes do not

(5) exist whenT,/T;<3.5[16].
For the solutions to be physicd|, has to be non-negative

We note that in this choice, the distribution functions for everywhere. This weak constraint gives rise to inequality
particles with positive velocity and with negative velocity width-amplitude relations. The main task for solving these
have been taken to be equyeotropig, while in general they inequalities is to find the global minimum &éf, which is at
can be different as allowed by E(l). By carrying out the the center of the solitary potential in our case. We separate
integrals off, andf; in Eqg. (2) and calculating the left-hand the parameter space into two distinct regions. &6t J,, the

fo(w) = v2mp/ 7T, exp(— wiT,).
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hot that its density is essentially unaffected by the solitary
potential. This is the limit on which all previous studies on
electron mode solitary waves were based.

These inequalities occur because we are free to place the
global minimum off,, in a continuous range by correspond-
ingly adjusting the amplitude and widths. A point on the
shaded surface corresponds to a solution that has zero phase-
space density at the centér=0,z=0,v=0) of the solitary
phase-space structure. The second part of inequgjtys
plotted as Fig. (b), which illustrates how the maximum al-
lowed potential amplitude depends bifor a range ot that

FIG. 1. Allowed parameter space for 3D BGK electron and ionis relevant to most space and laboratory investigations. One
solitary waves based on inequalitié® and(9). (a) Boundaries of  important implication is that for a givenvalue, there exists
inequality (8) for t=0 (surface A andt=0.1(surface B. Points on a maximum allowed electric field amplitude, a consequence
and above the shaded surfaces represent allowed paralldldgize  of the upper bound iy and lower bounds i, and 6,.
perpendicular sizés,), and potential amplitudes)). The curves on In the limit of &, — c, inequality(8) reduces to the width-
the 6,=0 plane depicting inequalit{9) are asymptotic projections amplitude relation for 1D BGK solitary waves. This limit
of the two surfaces(b) Allowed ¢ for a range oft=g,T:/aiT,  yjelds an upper bound fa#, that is valid for all finites, at a
according to inequality9), which shows that there exists an upper given temperature ratio between ions and electrons. If we
bound for the potential.amplitude with a given temperature ratiof,ther sett=0, the resulting 1D inequality relation provides
between electrons and ions. us a ground to understand the discrepancy between two pre-

vious results of whether the width should incre§&d] or
first term inside the first square brackets in [Ef). is posi-  decreas¢15] with the amplitude. Both results are contained
tive; hence, the minimum ofi, for a givenw is atf,(0,w). in the inequality relation with that of Ref14] corresponding
Given the fact that the last two terms in K@) are positive  to the lower bounding curve, since only empty-centered dis-
and monotonically decreasing wi|, it can be shown that tributions were studied, and that of RgE5] contained in the
the global minimum isf,(0,-). For 6> 6, the global region above the curve, as the distributions only take finite
minimum of f;, occurs at maximum allowed For a given values at the center of the phase-space structure.
w<0, the maximunr at which a trapped particle with en- We note that the size and the amplitude of BGK solitary
ergy w can exist is ther,, that satisfies w=®(r,,0). waves do not have a lower cutoff within our theory. The
Putting Eq. (3) into this condition, we obtainr?,, ~ underlying reason is that the screening of the charged core is
:—25r2|n(—w/ ). We then find again that the global mini- accomplished by trapped particles which are part of the soli-
mum of f,(r max, W) is atw=—¢, wherer,,=0. Therefore, in  tary structure itself. Debye screening is not involved in these
both regions, the width-amplitude relations are set by theelf-consistent, self-sustained nonlinear objects. Their size

constraintf, (0, —)=0. can be well below the Debye radius as long as there are
Upon rearrangement of Eq7), the inequality resulting €nough particles in the solitary wave to ensure the validity of
from f,(0,-)=0 is the mean-field approach. Taking a Debye radius) 100 m
and a plasma density 5 ¢f(typical of the low-altitude
2(41In2-1) auroral ionosphepe a width of 0.01\p for the solitary po-
2 = E (z//t)/\@—4/62' (8) tential allows 5< 10° particles in the structure, well within
P r the applicability of the mean-field approach. Indeed, sub-
where Debye-scale solitary waves have been obsefégd
F () All the above results have been obtained in the infinite
plht) _ B TN otih 5 i [T magnetic field limit. To establish the validity of these results
Jar =e/[1-erfVy)] - e \terfi(vty). in the finite magnetic field, we consider trapped particle tra-

_ _ o _ - jectories inside the solitary potential. Here, we only summa-
Since the denominator in inequalit®) has to be positive rize the final results, and leave the actual calculations to a

definite, additional inequalities arise future article. If the cyclotron radius is much smaller than the
) I scale lengths over which the potential varies, the instanta-
5= AYIF(g1) > 0. 9 neous guiding center of the particle would spiral around the

Figure 1a) plots the above inequalities for two different infinite-field guiding center, and the solitary structure could
values. Parameters lying on or above the shaded surface R¢ Maintained. BotlEX B drift and polarization drift are
are allowed fort=0, and those under the surface are forbig-Contained in our calculations. Sinéex B drift is in the azi-
den. Similarly, parameters on and above the surface B ar@uthal direction, it is only the polarization drift that would
allowed for t;0.1. The curves on thes,=0 plane are lead to the running away of trapped particles and thus the

asymptotic projections of the shaded surfaces plotted accorgiSintégration of the solitary structure. We obtain the follow-
ing to the first part of inequalityd). The larger valué is, the ing criteria for neglecting the effects due to the polarization

more restricted the parameter space is. The case @fcor- drift:
responds to the limiT,— %, when the second species is so Vmyglq, < B3, (10)
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VM, glg, < BS,. (11)  hibits particles from free acceleration by the applied electric
field and consequently would regulate the electric current,
Our results are consistent with those from a numerical invesge excitation of BGK waves may lead to finite resistivity
tigation of finite-field effect18]. o that is required for melting the frozen-in magnetic flux and
The freedom to continuously adjust the global minimumsaijitate reconnection to occur in collisionless plasi&s].

of the trapped particle distribution is due to the collisionless |, summary, we have obtained trapped particle solutions
nature of the plasma. The identities of trapped and passing,, 3p BGK electron and ion solitary waves, taking into
particles are preserved, as the energy of a particle is conyccount dynamics of both species. We derived from the so-
served. Collisions destroy energy conservation of individua|,tions exact inequality relations that constrain the widths
particles, and consequently do not allow the existence of gnq amplitudes of the solitary waves, and the temperature
trapped particle state. Therefore, the kinetic solitary wavesaiio between electrons and ions. Our results are valid for
have a continuum of allowed potential heights and widths, insy,ong magnetic fields where the cyclotron radius of trapped
great distinction to fluid solitons that possess only one alyaricles is smaller than the lengths over which the solitary
lowed width for a fixed amplitude. Moreover, even with the ytential varies. We suggest that the continuum of allowed
same ambient plasma distribution, different functional formsparameter space of BGK waves is responsible for their
for the solitary potential are allowed. This multitude of con- iquity. Our analytical solution for the trapped particle dis-
tinua of allowed potentials supports the ubiquity of BGK yjnytion provides a good foundation for future investigations
waves that is revealed by numerous experimental and simys, stapilities of BGK waves.
lation studies. Because these solitary waves have many de-
grees of freedom, energy, momentum, and charge are readily This research at the University of lowa was supported in
transferred between them, so they can make important copart by DOE Cooperative Agreement No. DE-FCO02-
tributions to bulk properties of the plasma such as thermaD1ER54651 and NSF ATM 03-27450, and at the University
transport and electrical resistivity. As particle trapping pro-of Washington by NSF DMR-0201948.
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